
Extract metadata from a downloaded IO table
Source:R/iotables_metadata_get.R
iotables_metadata_get.RdReturn only the metadata information from a nested input–output (IO) table
(or related table) created by iotables_download(). The data list-column
is removed, leaving only metadata rows.
Arguments
- dat
A nested tibble created by
iotables_download(). Defaults toNULL, in which case the function attempts to read the file fromtempdir().- source
Character. A valid data source code (see Sources).
Details
If dat is NULL, the function tries to load the file corresponding to
source from the current session's tempdir().
Sources
Supported Eurostat/ONS products include:
"naio_10_cp1700"— Symmetric IO table, basic prices (product × product)"naio_10_pyp1700"— Symmetric IO table, basic prices (product × product), previous years’ prices"naio_10_cp1750"— Symmetric IO table, basic prices (industry × industry)"naio_10_pyp1750"— Symmetric IO table, basic prices (industry × industry), previous years’ prices"naio_10_cp15"— Supply table at basic prices incl. margins/taxes"naio_10_cp16"— Use table at purchasers’ prices"naio_10_cp1610"— Use table at basic prices"naio_10_pyp1610"— Use table at basic prices (previous years’ prices)"naio_10_cp1620"/"naio_10_pyp1620"— Trade & transport margins"naio_10_cp1630"/"naio_10_pyp1630"— Taxes less subsidies on products"uk_2010_siot"— United Kingdom IO Analytical Tables
See also
Other import functions:
airpol_get(),
employment_get(),
iotables_download(),
iotables_read_tempdir()
Examples
# \donttest{
# Download data into tempdir()
iotables_download(source = "naio_10_pyp1750")
#> The naio_10_pyp1750_processed.rds is retrieved from the temporary directory.
#> Returning the processed SIOTs from tempdir. You can override this with force_download=TRUE.
#> # A tibble: 114 × 10
#> unit stk_flow geo time unit_lab stk_flow_lab geo_lab time_lab
#> <chr> <chr> <chr> <date> <chr> <chr> <chr> <date>
#> 1 MIO_EUR DOM DK 2008-01-01 Million eu… Domestic Denmark 2008-01-01
#> 2 MIO_EUR DOM DK 2009-01-01 Million eu… Domestic Denmark 2009-01-01
#> 3 MIO_EUR DOM DK 2010-01-01 Million eu… Domestic Denmark 2010-01-01
#> 4 MIO_EUR DOM DK 2011-01-01 Million eu… Domestic Denmark 2011-01-01
#> 5 MIO_EUR DOM DK 2012-01-01 Million eu… Domestic Denmark 2012-01-01
#> 6 MIO_EUR DOM DK 2013-01-01 Million eu… Domestic Denmark 2013-01-01
#> 7 MIO_EUR DOM DK 2014-01-01 Million eu… Domestic Denmark 2014-01-01
#> 8 MIO_EUR DOM DK 2015-01-01 Million eu… Domestic Denmark 2015-01-01
#> 9 MIO_EUR DOM DK 2016-01-01 Million eu… Domestic Denmark 2016-01-01
#> 10 MIO_EUR DOM DK 2017-01-01 Million eu… Domestic Denmark 2017-01-01
#> # ℹ 104 more rows
#> # ℹ 2 more variables: year <dbl>, data <list>
# Extract metadata only
iotables_metadata_get(source = "naio_10_pyp1750")
#> # A tibble: 114 × 9
#> unit stk_flow geo time unit_lab stk_flow_lab geo_lab time_lab
#> <chr> <chr> <chr> <date> <chr> <chr> <chr> <date>
#> 1 MIO_EUR DOM DK 2008-01-01 Million eu… Domestic Denmark 2008-01-01
#> 2 MIO_EUR DOM DK 2009-01-01 Million eu… Domestic Denmark 2009-01-01
#> 3 MIO_EUR DOM DK 2010-01-01 Million eu… Domestic Denmark 2010-01-01
#> 4 MIO_EUR DOM DK 2011-01-01 Million eu… Domestic Denmark 2011-01-01
#> 5 MIO_EUR DOM DK 2012-01-01 Million eu… Domestic Denmark 2012-01-01
#> 6 MIO_EUR DOM DK 2013-01-01 Million eu… Domestic Denmark 2013-01-01
#> 7 MIO_EUR DOM DK 2014-01-01 Million eu… Domestic Denmark 2014-01-01
#> 8 MIO_EUR DOM DK 2015-01-01 Million eu… Domestic Denmark 2015-01-01
#> 9 MIO_EUR DOM DK 2016-01-01 Million eu… Domestic Denmark 2016-01-01
#> 10 MIO_EUR DOM DK 2017-01-01 Million eu… Domestic Denmark 2017-01-01
#> # ℹ 104 more rows
#> # ℹ 1 more variable: year <dbl>
# }