
Create an output coefficient matrix
Source:R/output_coefficient_matrix_create.R
output_coefficient_matrix_create.RdCreate an output-coefficient matrix from a symmetric input–output table or a use table. Output coefficients can be interpreted as the market shares of products in total output (row-wise normalization).
Arguments
- data_table
A symmetric input–output table, use table, margins, or tax table retrieved by
iotable_get(). If you requesttotal = "tfu"(total final use), you must supply a full table fromiotable_get()because the TFU column is in the second quadrant.- total
Which total to use for normalization. Use
"total"(or the present table variant name, e.g."CPA_TOTAL") for output by product, or"tfu"/"total_final_use"/"final_demand"for total final use. Default:"tfu".- digits
Integer number of decimal places for rounding. Default
NULL(no rounding).
Value
A data.frame whose first column is the key (product labels) and
the remaining columns form the output-coefficient matrix. Column order
follows the input.
Details
Let \(Z\) be the inter-industry flow block and \(x\) the vector of
product output (or, for final-demand shares, total final use).
The output-coefficient matrix \(B\) is defined row-wise as
\(b_{ij} = z_{ij} / x_i\). In practice, zeros in the denominator can make
equations unsolvable; this function replaces zeros with a small epsilon
(1e-6) to avoid division by zero.
Eurostat, Manual of Supply, Use and Input-Output Tables (e.g., pp. 495, 507) describes output coefficients and the Ghosh framework you may use these with.
See also
Other analytic object functions:
ghosh_inverse_create(),
input_flow_get(),
leontief_inverse_create(),
leontief_matrix_create()
Examples
data_table <- iotable_get()
output_coefficient_matrix_create(
data_table = data_table,
total = "tfu",
digits = 4
)
#> iotables_row agriculture_group industry_group construction
#> 1 agriculture_group 0.0258 0.5803 0.0000
#> 2 industry_group 0.0073 0.2822 0.0594
#> 3 construction 0.0017 0.0299 0.0158
#> 4 trade_group 0.0066 0.1346 0.0263
#> 5 business_services_group 0.0053 0.1388 0.0448
#> 6 other_services_group 0.0030 0.0294 0.0034
#> trade_group business_services_group other_services_group
#> 1 0.0138 0.0162 0.0174
#> 2 0.0381 0.0111 0.0281
#> 3 0.0216 0.0955 0.0373
#> 4 0.1378 0.0201 0.0389
#> 5 0.0950 0.2790 0.0494
#> 6 0.0221 0.0296 0.0434